(0) Obligation:
JBC Problem based on JBC Program:
Manifest-Version: 1.0
Created-By: 1.6.0_22 (Sun Microsystems Inc.)
Main-Class: Avg
public class Avg {
public static void main(String[] args) {
int x, y;
x = args[0].length();
y = args[1].length();
average(x,y);
}
public static int average(int x, int y) {
if (x > 0) {
return average(x-1, y+1);
} else if (y > 2) {
return 1 + average(x+1, y-2);
} else {
return 1;
}
}
}
(1) JBC2FIG (SOUND transformation)
Constructed FIGraph.
(2) Obligation:
FIGraph based on JBC Program:
Avg.main([Ljava/lang/String;)V: Graph of 139 nodes with 0 SCCs.
Avg.average(II)I: Graph of 63 nodes with 0 SCCs.
(3) FIGtoITRSProof (SOUND transformation)
Transformed FIGraph SCCs to IDPs. Logs:
Log for SCC 0: Generated 28 rules for P and 40 rules for R.
Combined rules. Obtained 2 rules for P and 10 rules for R.
Filtered ground terms:
391_0_average_LE(x1, x2, x3, x4) → 391_0_average_LE(x2, x3, x4)
Cond_391_0_average_LE1(x1, x2, x3, x4, x5) → Cond_391_0_average_LE1(x1, x3, x4, x5)
727_1_average_InvokeMethod(x1, x2, x3, x4) → 727_1_average_InvokeMethod(x1, x4)
Cond_391_0_average_LE(x1, x2, x3, x4, x5) → Cond_391_0_average_LE(x1, x4)
901_0_average_Return(x1, x2, x3) → 901_0_average_Return(x2, x3)
931_0_average_Return(x1) → 931_0_average_Return
857_0_average_Return(x1, x2, x3) → 857_0_average_Return(x2, x3)
784_0_average_Return(x1, x2, x3) → 784_0_average_Return(x2, x3)
699_0_average_Return(x1, x2, x3) → 699_0_average_Return(x2, x3)
631_0_average_Return(x1) → 631_0_average_Return
Filtered duplicate args:
391_0_average_LE(x1, x2, x3) → 391_0_average_LE(x2, x3)
Cond_391_0_average_LE1(x1, x2, x3, x4) → Cond_391_0_average_LE1(x1, x3, x4)
Filtered unneeded arguments:
682_1_average_InvokeMethod(x1, x2, x3, x4, x5) → 682_1_average_InvokeMethod(x1, x4, x5)
Combined rules. Obtained 2 rules for P and 10 rules for R.
Finished conversion. Obtained 2 rules for P and 10 rules for R. System has predefined symbols.
(4) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
784_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
857_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
901_0_average_Return(
1,
x1),
x1) →
931_0_average_Return682_1_average_InvokeMethod(
631_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(0):
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
x1[0] > 2,
x1[0],
0)
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
(2):
391_0_AVERAGE_LE(
x1[2],
x0[2]) →
COND_391_0_AVERAGE_LE1(
x1[2] >= 0 && x0[2] > 0,
x1[2],
x0[2])
(3):
COND_391_0_AVERAGE_LE1(
TRUE,
x1[3],
x0[3]) →
391_0_AVERAGE_LE(
x1[3] + 1,
x0[3] - 1)
(0) -> (1), if ((x1[0] > 2 →* TRUE)∧(x1[0] →* x1[1]))
(1) -> (0), if ((x1[1] - 2 →* x1[0])∧(1 →* 0))
(1) -> (2), if ((x1[1] - 2 →* x1[2])∧(1 →* x0[2]))
(2) -> (3), if ((x1[2] >= 0 && x0[2] > 0 →* TRUE)∧(x1[2] →* x1[3])∧(x0[2] →* x0[3]))
(3) -> (0), if ((x1[3] + 1 →* x1[0])∧(x0[3] - 1 →* 0))
(3) -> (2), if ((x1[3] + 1 →* x1[2])∧(x0[3] - 1 →* x0[2]))
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(5) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
391_0_AVERAGE_LE(
x1,
0) →
COND_391_0_AVERAGE_LE(
>(
x1,
2),
x1,
0) the following chains were created:
- We consider the chain 391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0), COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1) which results in the following constraint:
(1) (>(x1[0], 2)=TRUE∧x1[0]=x1[1] ⇒ 391_0_AVERAGE_LE(x1[0], 0)≥NonInfC∧391_0_AVERAGE_LE(x1[0], 0)≥COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)∧(UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥))
We simplified constraint (1) using rule (IV) which results in the following new constraint:
(2) (>(x1[0], 2)=TRUE ⇒ 391_0_AVERAGE_LE(x1[0], 0)≥NonInfC∧391_0_AVERAGE_LE(x1[0], 0)≥COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)∧(UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥))
We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(3) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(4) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(5) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(6) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
For Pair
COND_391_0_AVERAGE_LE(
TRUE,
x1,
0) →
391_0_AVERAGE_LE(
-(
x1,
2),
1) the following chains were created:
- We consider the chain COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1) which results in the following constraint:
(7) (COND_391_0_AVERAGE_LE(TRUE, x1[1], 0)≥NonInfC∧COND_391_0_AVERAGE_LE(TRUE, x1[1], 0)≥391_0_AVERAGE_LE(-(x1[1], 2), 1)∧(UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[(-1)bso_23] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[(-1)bso_23] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[(-1)bso_23] ≥ 0)
We simplified constraint (10) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(11) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧0 = 0∧[(-1)bso_23] ≥ 0)
For Pair
391_0_AVERAGE_LE(
x1,
x0) →
COND_391_0_AVERAGE_LE1(
&&(
>=(
x1,
0),
>(
x0,
0)),
x1,
x0) the following chains were created:
- We consider the chain 391_0_AVERAGE_LE(x1[2], x0[2]) → COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2]), COND_391_0_AVERAGE_LE1(TRUE, x1[3], x0[3]) → 391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1)) which results in the following constraint:
(12) (&&(>=(x1[2], 0), >(x0[2], 0))=TRUE∧x1[2]=x1[3]∧x0[2]=x0[3] ⇒ 391_0_AVERAGE_LE(x1[2], x0[2])≥NonInfC∧391_0_AVERAGE_LE(x1[2], x0[2])≥COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
We simplified constraint (12) using rules (IV), (IDP_BOOLEAN) which results in the following new constraint:
(13) (>=(x1[2], 0)=TRUE∧>(x0[2], 0)=TRUE ⇒ 391_0_AVERAGE_LE(x1[2], x0[2])≥NonInfC∧391_0_AVERAGE_LE(x1[2], x0[2])≥COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])∧(UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥))
We simplified constraint (13) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(14) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
We simplified constraint (14) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(15) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
We simplified constraint (15) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(16) (x1[2] ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[(-1)bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
We simplified constraint (16) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(17) (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
For Pair
COND_391_0_AVERAGE_LE1(
TRUE,
x1,
x0) →
391_0_AVERAGE_LE(
+(
x1,
1),
-(
x0,
1)) the following chains were created:
- We consider the chain COND_391_0_AVERAGE_LE1(TRUE, x1[3], x0[3]) → 391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1)) which results in the following constraint:
(18) (COND_391_0_AVERAGE_LE1(TRUE, x1[3], x0[3])≥NonInfC∧COND_391_0_AVERAGE_LE1(TRUE, x1[3], x0[3])≥391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))∧(UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥))
We simplified constraint (18) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(19) ((UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
We simplified constraint (19) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(20) ((UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
We simplified constraint (20) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(21) ((UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥)∧[1 + (-1)bso_27] ≥ 0)
We simplified constraint (21) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(22) ((UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- 391_0_AVERAGE_LE(x1, 0) → COND_391_0_AVERAGE_LE(>(x1, 2), x1, 0)
- (x1[0] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)
- COND_391_0_AVERAGE_LE(TRUE, x1, 0) → 391_0_AVERAGE_LE(-(x1, 2), 1)
- ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧0 = 0∧[(-1)bso_23] ≥ 0)
- 391_0_AVERAGE_LE(x1, x0) → COND_391_0_AVERAGE_LE1(&&(>=(x1, 0), >(x0, 0)), x1, x0)
- (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])), ≥)∧[bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x0[2] + [bni_24]x1[2] ≥ 0∧[(-1)bso_25] ≥ 0)
- COND_391_0_AVERAGE_LE1(TRUE, x1, x0) → 391_0_AVERAGE_LE(+(x1, 1), -(x0, 1))
- ((UIncreasing(391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))), ≥)∧0 = 0∧0 = 0∧[1 + (-1)bso_27] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(727_1_average_InvokeMethod(x1, x2)) = [-1]
POL(699_0_average_Return(x1, x2)) = [-1]
POL(1) = [1]
POL(931_0_average_Return) = [-1]
POL(784_0_average_Return(x1, x2)) = [-1]
POL(857_0_average_Return(x1, x2)) = [-1]
POL(901_0_average_Return(x1, x2)) = [-1]
POL(682_1_average_InvokeMethod(x1, x2, x3)) = [-1]
POL(631_0_average_Return) = [-1]
POL(0) = 0
POL(391_0_AVERAGE_LE(x1, x2)) = [-1] + [2]x2 + x1
POL(COND_391_0_AVERAGE_LE(x1, x2, x3)) = [-1] + x2
POL(>(x1, x2)) = [-1]
POL(2) = [2]
POL(-(x1, x2)) = x1 + [-1]x2
POL(COND_391_0_AVERAGE_LE1(x1, x2, x3)) = [-1] + [2]x3 + x2
POL(&&(x1, x2)) = [-1]
POL(>=(x1, x2)) = [-1]
POL(+(x1, x2)) = x1 + x2
The following pairs are in P
>:
COND_391_0_AVERAGE_LE1(TRUE, x1[3], x0[3]) → 391_0_AVERAGE_LE(+(x1[3], 1), -(x0[3], 1))
The following pairs are in P
bound:
391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)
391_0_AVERAGE_LE(x1[2], x0[2]) → COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
The following pairs are in P
≥:
391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)
COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1)
391_0_AVERAGE_LE(x1[2], x0[2]) → COND_391_0_AVERAGE_LE1(&&(>=(x1[2], 0), >(x0[2], 0)), x1[2], x0[2])
There are no usable rules.
(6) Complex Obligation (AND)
(7) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer, Boolean
The ITRS R consists of the following rules:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
784_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
857_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
901_0_average_Return(
1,
x1),
x1) →
931_0_average_Return682_1_average_InvokeMethod(
631_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(0):
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
x1[0] > 2,
x1[0],
0)
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
(2):
391_0_AVERAGE_LE(
x1[2],
x0[2]) →
COND_391_0_AVERAGE_LE1(
x1[2] >= 0 && x0[2] > 0,
x1[2],
x0[2])
(1) -> (0), if ((x1[1] - 2 →* x1[0])∧(1 →* 0))
(0) -> (1), if ((x1[0] > 2 →* TRUE)∧(x1[0] →* x1[1]))
(1) -> (2), if ((x1[1] - 2 →* x1[2])∧(1 →* x0[2]))
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(8) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(9) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
784_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
857_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
901_0_average_Return(
1,
x1),
x1) →
931_0_average_Return682_1_average_InvokeMethod(
631_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
(0):
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
x1[0] > 2,
x1[0],
0)
(1) -> (0), if ((x1[1] - 2 →* x1[0])∧(1 →* 0))
(0) -> (1), if ((x1[0] > 2 →* TRUE)∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(10) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(11) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
(0):
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
x1[0] > 2,
x1[0],
0)
(1) -> (0), if ((x1[1] - 2 →* x1[0])∧(1 →* 0))
(0) -> (1), if ((x1[0] > 2 →* TRUE)∧(x1[0] →* x1[1]))
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(12) IDPNonInfProof (SOUND transformation)
The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that
final constraints are written in
bold face.
For Pair
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
-(
x1[1],
2),
1) the following chains were created:
- We consider the chain COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1) which results in the following constraint:
(1) (COND_391_0_AVERAGE_LE(TRUE, x1[1], 0)≥NonInfC∧COND_391_0_AVERAGE_LE(TRUE, x1[1], 0)≥391_0_AVERAGE_LE(-(x1[1], 2), 1)∧(UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥))
We simplified constraint (1) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(2) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[2 + (-1)bso_7] ≥ 0)
We simplified constraint (2) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(3) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[2 + (-1)bso_7] ≥ 0)
We simplified constraint (3) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(4) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧[2 + (-1)bso_7] ≥ 0)
We simplified constraint (4) using rule (IDP_UNRESTRICTED_VARS) which results in the following new constraint:
(5) ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧0 = 0∧[2 + (-1)bso_7] ≥ 0)
For Pair
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
>(
x1[0],
2),
x1[0],
0) the following chains were created:
- We consider the chain 391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0), COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1) which results in the following constraint:
(6) (>(x1[0], 2)=TRUE∧x1[0]=x1[1] ⇒ 391_0_AVERAGE_LE(x1[0], 0)≥NonInfC∧391_0_AVERAGE_LE(x1[0], 0)≥COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)∧(UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥))
We simplified constraint (6) using rule (IV) which results in the following new constraint:
(7) (>(x1[0], 2)=TRUE ⇒ 391_0_AVERAGE_LE(x1[0], 0)≥NonInfC∧391_0_AVERAGE_LE(x1[0], 0)≥COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)∧(UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥))
We simplified constraint (7) using rule (POLY_CONSTRAINTS) which results in the following new constraint:
(8) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
We simplified constraint (8) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:
(9) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
We simplified constraint (9) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:
(10) (x1[0] + [-3] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(-1)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
We simplified constraint (10) using rule (IDP_SMT_SPLIT) which results in the following new constraint:
(11) (x1[0] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
To summarize, we get the following constraints P
≥ for the following pairs.
- COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1)
- ((UIncreasing(391_0_AVERAGE_LE(-(x1[1], 2), 1)), ≥)∧0 = 0∧[2 + (-1)bso_7] ≥ 0)
- 391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)
- (x1[0] ≥ 0 ⇒ (UIncreasing(COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)), ≥)∧[(2)bni_8 + (-1)Bound*bni_8] + [bni_8]x1[0] ≥ 0∧[(-1)bso_9] ≥ 0)
The constraints for P
> respective P
bound are constructed from P
≥ where we just replace every occurence of "t ≥ s" in P
≥ by "t > s" respective "t ≥
c". Here
c stands for the fresh constant used for P
bound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:
POL(TRUE) = 0
POL(FALSE) = 0
POL(COND_391_0_AVERAGE_LE(x1, x2, x3)) = [-1] + x2
POL(0) = 0
POL(391_0_AVERAGE_LE(x1, x2)) = [-1] + x1
POL(-(x1, x2)) = x1 + [-1]x2
POL(2) = [2]
POL(1) = [1]
POL(>(x1, x2)) = [-1]
The following pairs are in P
>:
COND_391_0_AVERAGE_LE(TRUE, x1[1], 0) → 391_0_AVERAGE_LE(-(x1[1], 2), 1)
The following pairs are in P
bound:
391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)
The following pairs are in P
≥:
391_0_AVERAGE_LE(x1[0], 0) → COND_391_0_AVERAGE_LE(>(x1[0], 2), x1[0], 0)
There are no usable rules.
(13) Complex Obligation (AND)
(14) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(0):
391_0_AVERAGE_LE(
x1[0],
0) →
COND_391_0_AVERAGE_LE(
x1[0] > 2,
x1[0],
0)
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(15) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(16) TRUE
(17) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
R is empty.
The integer pair graph contains the following rules and edges:
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(18) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.
(19) TRUE
(20) Obligation:
IDP problem:
The following function symbols are pre-defined:
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
| ~ | Bwxor: (Integer, Integer) -> Integer |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
The following domains are used:
Integer
The ITRS R consists of the following rules:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
784_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
857_0_average_Return(
1,
x1),
x1) →
931_0_average_Return727_1_average_InvokeMethod(
901_0_average_Return(
1,
x1),
x1) →
931_0_average_Return682_1_average_InvokeMethod(
631_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1) →
901_0_average_Return(
x2,
x3)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x3) →
901_0_average_Return(
x0,
x1)
The integer pair graph contains the following rules and edges:
(1):
COND_391_0_AVERAGE_LE(
TRUE,
x1[1],
0) →
391_0_AVERAGE_LE(
x1[1] - 2,
1)
(3):
COND_391_0_AVERAGE_LE1(
TRUE,
x1[3],
x0[3]) →
391_0_AVERAGE_LE(
x1[3] + 1,
x0[3] - 1)
The set Q consists of the following terms:
727_1_average_InvokeMethod(
699_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
784_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
857_0_average_Return(
1,
x0),
x0)
727_1_average_InvokeMethod(
901_0_average_Return(
1,
x0),
x0)
682_1_average_InvokeMethod(
631_0_average_Return,
0,
x0)
682_1_average_InvokeMethod(
699_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
784_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
857_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
901_0_average_Return(
x0,
x1),
x0,
x1)
682_1_average_InvokeMethod(
931_0_average_Return,
0,
x0)
(21) IDependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.
(22) TRUE